Functions | |
template<class T, class U> | |
U | eval (const Polynomial< T > &p, const U &x) |
template<class T, class U, class V> | |
U | eval (const Polynomial< T > &p, const U &x, V &e) |
template<class T, class U> | |
U | evalAndDeflate (const Polynomial< T > &p, const U &a, Polynomial< U > &q) |
template<class T, class U, class V> | |
U | evalAndDeflate (const Polynomial< T > &p, const U &a, Polynomial< U > &q, V &e) |
template<class T, class U> | |
U | evalError (const Polynomial< T > &p, const U &mx) |
template<class T, class U> | |
U | evalAndDerive (const Polynomial< T > &p, const U &x, U &ppx) |
template<class T, class U> | |
U | evalAndDerive (const Polynomial< T > &p, const U &x, U &ppx, U &pppx) |
template<class T, class U> | |
U | evalDeriveAndDeflate (const Polynomial< T > &p, const U &x, U &ppx, U &pppx, Polynomial< U > &q) |
|
evaluates polynomial value
Evaluates No error checking is performed, so any validation for overflow, or underflow is the responsibility of the caller.
Definition at line 896 of file Polynomial.h. |
|
evaluates polynomial value
Evaluates No error checking is performed, so any validation for overflow, or underflow is the responsibility of the caller.
Definition at line 860 of file Polynomial.h. |
|
evaluates polynomial value p(a), and computes
Evaluates
It can be shown that No error checking is performed, so any validation for overflow, or underflow is the responsibility of the caller.
Definition at line 1011 of file Polynomial.h. |
|
evaluates polynomial value p(a), and computes
Evaluates
It can be shown that No error checking is performed, so any validation for overflow, or underflow is the responsibility of the caller.
Definition at line 954 of file Polynomial.h. |
|
evaluates
Evaluates efficiently
Definition at line 1141 of file Polynomial.h. |
|
evaluates
Evaluates efficiently
Definition at line 1095 of file Polynomial.h. |
|
evaluates first derivate
Evaluates efficiently
Definition at line 1197 of file Polynomial.h. |
|
evaluates round-off error.
Evaluates round_off error in computing
Definition at line 1063 of file Polynomial.h. |